PCT #### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau ## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 7: H04L 29/06, H04B 7/185 (11) International Publication Number: WO 00/67449 (43) International Publication Date: 9 November 2000 (09.11.00) (21) International Application Number: PCT/US00/10394 A1 (22) International Filing Date: 18 April 2000 (18.04.00) (30) Priority Data: 60/129,988 18 April 1999 (18.04.99) US (71) Applicant (for all designated States except US): VIDEO NETWORKS INCORPORATED [US/US]; 245 Hembree Park Drive, Suite 100, Roswell, GA 30076 (US). (72) Inventors; and - (75) Inventors/Applicants (for US only): FABIANO, Leonard, J., III [US/US]; 3525 River Ferry Drive, Alpharetta, GA 30022 (US). MAI, Khanh [US/US]; 5525 Vicarage Walk, Alpharetta, GA 30005 (US). HRASTAR, Scott, E. [US/US]; 2125 Noblin Ridge Trail, Duluth, GA 30097 (US). ROSE, Steven, W. [US/US]; 866 Maikai Street, Hallimaile, HI 96768 (US). WARD, Michael, K. [US/US]; 15341 Falconbridge Terrace, North Potomac, MD 20878 (US). - (74) Agents: PRATT, John, S. et al.; Kilpatrick Stockton LLP, 1100 Peachtree Street, Suite 2800, Atlanta, GA 30309-4530 (US). (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). ### **Published** With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. (54) Title: SYSTEM AND METHOD FOR DYNAMIC TIME AND BANDWIDTH ALLOCATION ### (57) Abstract The present invention comprises a control system developed to efficiently share one or more satellite transponders or links among multiple satellite uplinking earth stations. The control system uses a terrestrial communications link, such as the Internet, to control access to the transponder or satellite Communications links. over this link may employ a TCP/IP protocol to connect the requesting uplinking earth stations with a centralized controller. The centralized controller may employ an algorithm to automate the process of gaining access to the satellite resources via terrestrial link. The control system (also referred to herein as the master arbitration server) for each transponder is placed in a centralized location, where it is accessible to all uplinking earth stations. It accepts requests via a terrestrial link to share a satellite transponder. All uplink stations that are requesting access to the satellite resources are identified such as by an IP address in the case of the Internet terrestrial link. Each satellite resource is identified by an authorization message generated by the master arbitration server. Requests are processed in a centralized location and result in channel assignments specified in terms of scheduled transmission start time, end time, frequency, and bandwidth, as well as other parameters for that satellite resource. An authorizing message is transmitted back to the uplink station when access is granted containing the resource grant specifications. A satellite resource may be granted in either a batch (continuous) or time division multiple access modes, as requested. Advantageously, the control system of the present invention can be applied to analog video, high-speed data, or other satellite transmissions.